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Abstract. We study the synchronization phenomena in systems of globally coupled oscillators,
each possessing finite inertia, with particular attention to the noise effects. The self-consistency
equation for the order parameter as well as the probability distribution is obtained from the
Smoluchowski equation, and analyzed in the presence of thermal noise. It is found that the
hysteresis present in the system without noise disappears as the thermal noise comes into the
system. Numerical simulations are also performed to give results generally consistent with the
analytical ones.

Due to its many applications and prevalence in the systems of physics, chemistry, biology, and
the social sciences, one of the remarkable features of a set of coupled oscillators,collective
synchronization, has attracted much interest [1–4]. Collective synchronization appears in
a variety of self-organizing systems, which may be modelled by sets of coupled nonlinear
oscillators [5–7]. The system of globally coupled oscillators has analytic simplicity and some
physical as well as biological applications, and has been most studied, both analytically and
numerically. The effects of nonzero inertia of each oscillator in such a system of globally
coupled oscillators have also been examined, and appearance of hysteresis together with
discontinuous transitions between the coherent and incoherent states have been pointed out
[8, 9]. Such hysteresis due to the inertia is well known in the response of a single oscillator
(without regard to synchronization). In this simple case, it has also been observed numerically
that the presence of noise strongly suppresses the hysteresis [10].

The purpose of this paper is to investigate the effects of the thermal noise on collective
synchronization in the system of coupled oscillator with finite inertia. In particular, how the
thermal noise affects the hysteretic behaviour of the system is examined in an analytical way.
For this purpose, we employ the Smoluchowski equation with the correction due to the inertia
[11], derive the self-consistency equation for the order parameter as well as the probability
distribution, and investigate the resulting collective synchronization phenomena in the presence
of the noise. It is found that the hysteresis in the synchronization is strongly suppressed and
disappears as the thermal noise comes into the system. We also present results of numerical
simulations, which indeed demonstrate strong suppression of the hysteresis by the noise.

¶ Present address: Department of Physics of Complex Systems, Weizmann Institute of Science, Revohot 76100,
Israel.
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We begin with the equations of motion for a set ofN oscillators, theith of which is
described by its phaseφi (i = 1, 2, . . . , N):

µφ̈i + φ̇i +
K

N

N∑
j=1

sin(φi − φj ) = ωi + 0i(t) (1)

whereµ denotes the magnitude of the inertia relative to the damping. The third term on the left-
hand side represents the global coupling between oscillators, with strengthK/N . The first and
the second terms on the right-hand side describe the constant driving and the random (thermal)
noise, respectively. The constant driving strengthωi is distributed over the whole oscillators
according to the distributiong(ω), which is assumed to be smooth and symmetric aboutω0.
Without loss of generality, we may takeω0 to be zero and also assume thatg(ω) is concave
at ω = 0. The noise0i(t)’s are independent white noise with zero mean and correlation
〈0i(t)0j (t ′)〉 = 2T δij δ(t − t ′), whereT (> 0) may be regarded as the effective temperature
of the system. Collective synchronization of such anN oscillator system is conveniently
described by the complex order parameter

9 ≡ 1

N

N∑
j=1

eiφj = 1eiθ (2)

where1 indicates the magnitude of the order parameter andθ denotes the average phase. Here,
nonvanishing9 indicates the occurrence of collective synchronization. The order parameter
defined in equation (2) allows us to reduce equation (1) to asingledecoupled equation

µφ̈i + φ̇i +K1 sin(φi − θ) = ωi + 0i(t) (3)

where1 andθ are to be determined by imposing self-consistency. Redefiningφi − θ asφi
and suppressing indices for simplicity, we obtain

µφ̈ + φ̇ +K1 sinφ = ω + 0(t). (4)

It is convenient to consider the corresponding Fokker–Planck equation for the probability
distributionP(φ, φ̇, t) rather than the Langevin equation in equation (4). Further, taking the
average over the velocitẏφ in the long-time limit reduces the Fokker–Planck equation into the
Smoluchowski equation, which reads [11]

∂P (φ, t)

∂t
= ∂

∂φ

[(
∂V (φ)

∂φ
P (φ) + T

∂P (φ)

∂φ

)(
1 +µ

∂2V (φ)

∂φ2

)]
(5)

with the washboard potentialV (φ) ≡ −K1 cosφ − ωφ. Note the correction term due to
the finite inertiaµ in equation (5). In the stationary state, the left-hand side of equation (5)
vanishes, leading to

(ω −K1 sinφ)P (φ)− T ∂P (φ)
∂φ

= SF(φ) (6)

whereS is a constant andF(φ) ≡ [1 + µ(∂2V/∂φ2)]−1 = (1 + µK1 cosφ)−1. At zero
(effective) temperature (T = 0), i.e. in the absence of noise, it is straightforward to obtain the
stationary probability distribution [9]

P(φ) =
{
N |ω −K1 sinφ|−1(1 +µK1 cosφ)−1 for |ω| > K1

δ[φ − sin−1(ω/K1)] for |ω| 6 K1 (7)

whereN is the normalization constant determined by the relation
∫ 2π

0 dφ P (φ) = 1.
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In the presence of noise (T 6= 0), the solution of equation (6) yields the probability
distribution

P(φ) = Ne−V (φ)/T
[
1− S

NT

∫ φ

0
F(φ′)eV (φ

′)/T dφ′
]

= Ne−V (φ)/T
[
1− 1− e−2πω/T∫ 2π

0 dφ′ F(φ′)eV (φ′)/T

∫ φ

0
dφ′′ F(φ′′)eV (φ

′′)/T
]

(8)

where the 2π -periodic conditionP(φ + 2π) = P(φ) has been used to obtainS, and the
normalization condition determinesN :

N =
{∫ 2π

0
dφ e−V (φ)/T

[
1− 1− e−2πω/T∫ 2π

0 F(φ′)eV (φ′)/T dφ′

∫ φ

0
dφ′′ F(φ′′)eV (φ

′′)/T
]}−1

.

Since we are interested in the transition between the incoherent state (1 = 0) and the coherent
one (1 6= 0), it is natural to assume thatµK1 � 1 near the transition, which allows the
expansion:F(φ) = (1+µK1 cosφ)−1 = 1−µK1 cosφ+(µK1)2 cos2 φ−(µK1)3 cos3 φ+
O(K1)4. We further use the series expansion of ex cosφ in terms of the modified Bessel
functions: ex cosφ = I0(x) + 2

∑∞
n=1 In(x) cosnφ. Putting these expansions and performing

integration, we write equation (8) in the form

P(φ) = Z−1f (φ)e(K1/T ) cosφ (9)

with

f (φ) ≡ I0(x)− 2
∞∑
n=1

(−1)nIn(x)Qn(y;φ)

+µK1

{
I0(x)Q1(y;φ) +

∞∑
n=1

(−1)nIn(x)[Qn+1(y;φ) +Qn−1(y;φ)]
}

+(µK1)2
{

1
2I0(x)− 1

2I0(x)Q2(y;φ)−
∞∑
n=1

(−1)nQn(y;φ)

− 1
2

∞∑
n=1

(−1)nIn(x)[Qn+2(y;φ) +Qn−2(y;φ)]
}

+(µK1)3
{

3
4I0(x)Q1(y;φ) + 3

4

∞∑
n=1

(−1)nIn(x)[Qn+1(y;φ) +Qn−1(y;φ)]

+1
4I0(x)Q3(y;φ) + 1

4

∞∑
n=1

(−1)nIn(x)[Qn+3(y;φ) +Qn−3(y;φ)]
}

+O(µK1)4 (10)

and

Z ≡ 2πI 2
0 (x) + 4πy2

∞∑
n=1

(−1)nI 2
n (x)Rn(y)− µK1

{
2πI0(x)I1(x)y

2R1(y)

+2πy2
∞∑
n=1

(−1)nIn(x)[In+1(x)Rn+1(y) + In−1(x)Rn−1(y)]

}
+(µK1)2

{
πI 2

0 (x) + πI0(x)I2(x)y
2R2(y) + 2πy2

∞∑
n=1

(−1)nI 2
n (x)Rn(y)

+πy2
∞∑
n=1

(−1)nIn(x)[In+2(x)Rn+2(y) + In−2(x)Rn−2(y)]

}
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−(µK1)3
{

3
2πI0(x)I1(x)y

2R1(y) + 3
2πy

2
∞∑
n=1

(−1)nIn(x)

×[In+1(x)Rn+1(y) + In−1(x)Rn−1(y)] +
π

2
I0(x)I3(x)y

2R3(y)

+
π

2
y2
∞∑
n=1

(−1)nIn(x)[In+3(x)Rn+3(y) + In−3(x)Rn−3(y)]

}
+ O(µK1)4 (11)

where x ≡ K1/T , y ≡ ω/T , Qn(y;φ) ≡ (n2 + y2)−1(ny sinnφ − y2 cosnφ), and
Rn(y) ≡ (n2 + y2)−1.

We now derive the self-consistency equation for the order parameter, which determines
the collective behaviour of the system. Recalling thatφ in equation (4) in fact representsφ−θ ,
we have the self-consistency equation

1 = 1

N

∑
j

eiφj =
∫ ∞
−∞

dω g(ω)〈eiφ〉ω (12)

where〈· · ·〉ω denotes the average in the stationary state with givenω.
At zero temperature the average in equation (12) is taken with respect to the probability

distribution given by equation (7), leading to the order parameter [9]

1 =
(π

2
− µ

2

)
g(0)K1 +

4

3
µg(0)(K1)2 +

π

16
g′′(0)(K1)3 + O(K1)4. (13)

Here in the presence of the inertia (µ 6= 0), unlocked oscillators as well as those locked to
the external (constant) driving contribute to the collective synchronization, and the resulting
quadratic term of the order(K1)2 is expected to induce hysteresis in the bifurcation diagram
[12]. The appearance of such hysteresis at zero temperature has been pointed out in the system
with non-vanishing inertia [8, 9].

We then take into account the effects of noise, which are described by the stationary
distribution given by equation (9). Again, with the expectation thatK1 is small near the
transition, we consider for simplicity the range of the temperature such asK1/T � 1. In
this case, where the noise strength is not so weak, the Bessel functions in equations (10) and
(11) can be expanded, and the corresponding stationary distribution employed in equation (12)
leads to the self-consistency equation for the order parameter:

1 = a(K1)− c(K1)3 + O(K1)5 (14)

with the coefficients given by the integrals

a =
∫ ∞
−∞

dω g(ω)
T − µω2

2(T 2 + ω2)

c =
∫ ∞
−∞

dω g(ω)

[
T +µ(T 2 − ω2)− µ2ω2T

4(T 2 + ω2)2
+
µ3ω2 + 2µ2T

8(T 2 + ω2)

− 6T +µ(8T 2 − ω2) +µ2T (8T 2 − ω2)

8(T 2 + ω2)(4T 2 + ω2)

]
.

The above integrals can be evaluated when the distribution of the constant drivingω is given.
For example, in the case of a Gaussian distribution, the above coefficientsa andc can be
computed in terms of the error function. Note that the above expressions reproduce the known
forms [5] in the absence of the inertia and noise (µ = 0 andT → 0): a = (π/2)g(0) and
c = −(π/16)g′′(0).
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The collective behaviour of the system for given values ofa andc can be obtained by
solving equation (14). WhenK < Kc ≡ 1/a, only the null solution (1 = 0) is possible. At
K = Kc, on the other hand, the null solution loses its stability and the nontrivial solution

1 = 1+ ≡
√
cK(aK − 1)

cK2
(15)

together with the unphysical solution1− ≡ −1+, emerges via a pitchfork bifurcation.
Subsequently, it grows in a continuous manner(a2/

√
c)(K−Kc)1/2 asK is increased beyond

Kc [12]. It is of particular interest here that the quadratic term of the order(K1)2, which gives
rise to hysteresis in the zero-temperature system described by equation (13), does not appear
in equation (14). It is thus concluded that the hysteresis present in the system without noise
is suppressed as the noise comes into the system. Such suppression of hysteresis due to noise
has also been observed numerically in a single oscillator, corresponding to equation (4) with
the couplingK1 fixed [10].

To confirm the analytical results presented above, we have performed numerical
simulations with the equations of motion given by equation (1) at various noise and coupling
strengths. The order parameter1 has been computed according to the definition given by
equation (2), and its behaviour with the coupling strength has been examined. For convenience,
a semicircle distribution of radius 0.5 has been employed forg(ω), and equation (1) has been
integrated with discrete time steps of1t = 0.001. (The results do not change qualitatively
even if other distribution such as a Gaussian is used.) At each run, we have usedNt = 105

time steps to compute the order parameter, discarding the data from the first 5×104 steps, and
varied both1t andNt to verify that the stationary state was achieved. Finally, independent
runs with 20 different distributions of the constant driving strength and initial conditions have
been performed, over which the averages have been taken.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5

∆

T=0.0
T=0.1

T=0.3

T=0.5

K
Figure 1. Behaviour of the order parameter with the coupling strength, at various noise strengths.
Error bars represent standard deviations, and lines are merely guides to the eye.
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We have thus computed the order parameter in the system ofN oscillators, forN up to
2000, and confirmed that there is no appreciable finite-size effects forN & 1000. Figure 1
presents the resulting behaviour of the order parameter at various noise strengths, in a system
of N = 2000 oscillators, each having the inertiaµ = 0.8: hysteresis is indeed manifested
at zero noise and observed to weaken strikingly, as the noise strength is increased. We have
also considered other values of the inertiaµ to find largely similar behaviour except for the
increase of hysteresis withµ, as expected. It is thus concluded that noise not only hinders
synchronization, making the critical coupling strengthKc larger, but also strongly suppresses
hysteresis coming from the non-vanishing inertia.

In conclusion, we have studied both analytically and numerically the synchronization
phenomena in a set of globally coupled oscillators, each possessing finite inertia, with particular
attention to the noise effects. The synchronization phenomena in the system without noise are
characterized by bistability and associated hysteresis, resulting from the inertia. Here it has
been found analytically that noise crucially changes the synchronization phenomena, strongly
suppressing such hysteresis: In the presence of noise, the system displays only the continuous
transition between the coherent and incoherent states, and no hysteretic behaviour can be
observed. Namely, the order parameter grows continuously from zero, which indicates that
K1 becomes vanishingly small near the transition. Consequently, the conditionK1/T � 1,
under which the self-consistency equation for the order parameter1 (equation (14)) has been
derived, is indeed satisfied near the transition, making the analysis consistent. However, it
should be noted that the condition may not hold in the zero-noise limit (T → 0), making
it unclear whether even arbitrarily small noise destroys the hysteretic behaviour completely.
Indeed numerical simulations seem to favour the existence of a finite critical noise strength,
below which hysteresis still persists.

We acknowledge the partial support from the Ministry of Education of Korea through the Basic
Science Research Institute Program and from the Korea Science and Engineering Foundation
through the SRC Program. HH was also supported in part by the Korea Research Foundation.
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